
CCGraph: a PDG-based code clone detector with approximate
graph matching

Yue Zou
∗

School of Computer Science and Technology, University of

Science and Technology of China

Hefei, China

zy1996@mail.ustc.edu.cn

Bihuan Ban
∗

School of Data Science, University of Science and

Technology of China

Hefei, China

banbihua@mail.ustc.edu.cn

Yinxing Xue
†

School of Computer Science and Technology, University of

Science and Technology of China

Hefei, China

yxxue@ustc.edu.cn

Yun Xu
†‡

School of Computer Science and Technology, University of

Science and Technology of China

Hefei, China

xuyun@ustc.edu.cn

ABSTRACT
The software clone detection is an active research area, which is

very important for software maintenance, bug detection etc. The

two pieces of cloned code reflect some similarities or equivalents

in the syntax or structure of the code representations. There are

many representations of code like AST, token, PDG etc. The PDG

(Program Dependency Graph) of source code can contain both

syntactic and structural information. However, most existing PDG-

based tools are quite time-consuming andmiss many clones because

they detect code clones with exact graph matching by using sub-

graph isomorphism. In this paper, we propose a novel PDG-based

code clone detector, CCGraph, that uses graph kernels. Firstly, we

normalize the structure of PDGs and design a two-stage filtering

strategy by measuring the characteristic vectors of codes. Then

we detect the code clones by using approximate graph matching

algorithm based on the reforming WL (Weisfeiler-Lehman) graph

kernel. Experiment results show that CCGraph retains a high accu-

racy, has both better recall and F1-score values, and detects more

semantic clones than other two related state-of-the-art tools. Be-

sides, CCGraph is much more efficient than the existing PDG-based

tools.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
Clone detection, Program dependence graph, WL graph kernel

∗
Also with Key Laboratory on High Performance Computing, Anhui Province.

†
Yinxing Xue and Yun Xu are the corresponding authors.

‡
Also with Key Laboratory on High Performance Computing, Anhui Province.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00

https://doi.org/10.1145/3324884.3416541

ACM Reference Format:
Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu. 2020. CCGraph: a PDG-

based code clone detectorwith approximate graphmatching. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), Sep-
tember 21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3324884.3416541

1 INTRODUCTION
Software development often has the phenomenon of copying sim-

ilar or identical code fragments from the existing source codes,

called 𝑐𝑜𝑑𝑒 𝑐𝑙𝑜𝑛𝑒𝑠 . Existing research shows that code cloning is

very important in the software development and maintenance [1,

2], like software refactoring [3], bug detection [4], copyright pla-

giarism detection [5], code evolution analysis. In the various kinds

of code clone detection approaches, PDG (Program Dependency

Graph)-based approaches can find the code clones both in syntac-

tic similarity and semantic similarity. As Bellon et al. [6] noted,

PDG-based approaches can also report non-contiguous clones that

cannot be perceived by other techniques. However, most PDG-

based approaches consume too much time beacuse they match

graphs exactly by using subgraph isomorphism, since this is an

NP-hard problem [7]. Besides, in existing PDG-based approaches,

many of the code clones are missed due to using exact or very close

subgraph isomorphism. Therefore, not only the PDG-based code

clone detector with approximate graph matching can find more

code clones, but also make the processing time faster. In addition,

there are some deep learning method, such as Oreo [15], which

encode software metrics including PDG metrics into vectors and

achieve good results. However, these methods are dependent on

the initial training data and lack interpretability of output results.

Among these PDG-based approaches, Liu et al. [5] proposed a

classic PDG-based clone detection by using the VF subgraph isomor-

phism algorithm. And they did not perform any filtering operations

on PDG candidate sets. Since VF subgraph isomorphism algorithm

belongs to the method of exact graphs match, this results in the

expensive time cost. For the issue of high complexity of subgraph

isomorphism, Gabel et al. [8] proposed a method of mapping PDG

to AST and used the similarity of AST to replace the similarity of

PDGs. Although this method speeds up the clone detection, it loses

a lot of semantic information and results in many missing clones.

https://doi.org/10.1145/3324884.3416541
https://doi.org/10.1145/3324884.3416541

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu

1: public static void loop1(int maxsize){

2: int index=0;

3: while(index<maxsize){

4: System.out.println(index);

5: index++;

6: }

7: }

(a) The Source Code of loop1

1: public static void loop2(int count){

2: int loopsize=count;

3: for(int i=0;i<loopsize;++i){

4: count=i;

5: System.out.println(i);

6: }

7: }

(b) The Source Code of loop2

Figure 1: The PDG-based Clone Pair for Loop Printing.

index++; <5>

System.out.println(index); <4>

int maxsize; <1>

index < maxsize <3>

int index=0; <2>

(a) PDG for loop1

int i=0; <4>

++i; <4>System.out.println(i); <6>

int count; <1>

i < loopsize <4>

int loopsize=count; <3>

count = i; <5>

(b) PDG for loop2

Figure 2: Two PDGs for Loops in Figure 1.

Futhermore, for the issue of large PDG candidate sets, both Li et al.

[4] and Wang et al. [9] adopted some strategies to modify the PDG

and reduce the size of PDG candidate sets, like removing irrelevant

nodes and edges. However, they still do not avoid solving the issue

of subgraph isomorphism directly.

Besides the processing time, there are many clones missed for

existing PDG-based approaches. For example, the PDGs of the origi-

nal and the clone code are given in Figure 1. Both of the code pieces

implement the same function of loop printing. However, one uses

a𝑤ℎ𝑖𝑙𝑒 loop and the other one uses a 𝑓 𝑜𝑟 loop, and there are some

other different statements. From the PDGs shown in Figure 2, there

is no exact subgraph isomorphism between the two PDGs, but there

are some local similarities. As we can see, the diamond nodes in

two graphs have similar outgoing and inbound edges. Moreover,

they have similar neighbor nodes which are assignment or declara-

tion statements, and they have similar control dependencies with

with their neighbors. Also, there are some other local similarities

in the two PDGs, which are not described in details here. How-

ever, the existing PDG-based methods cannot detect these local

similarities. Therefore, we adopt the approximate graph matching

algorithm to detect these local similarities which is actually a kind

of approximated PDG-based code clones.

The approximate graph matching algorithms are mainly divided

into two classes, graph embedding and graph kernel methods [10].

Graph embedding methods embed a graph into a low-dimensional

vector based on the characteristics of the graph, which can quantita-

tively measure the similarity between nodes and is more convenient

to apply. However, this dimensionality reduction process loses a lot

of graph structural information and severely affects the accuracy

of the graph matching. The graph kernel methods [11] divide a

graph into several sub-structures as kernels, and then calculate the

similarity of the two graphs through their sub-structures. Different

decomposition methods and substructures correspond to different

types of graph kernel methods. For example, the WL (Weisfeiler-

Lehman) [11] graph kernel collects the labels of the adjacent nodes

of each node in two graphs, and measures the similarity of two

nodes according to the similarity of the labels. The more similar

nodes in two graphs, the closer the two graphs are. This kind of

methods not only retain the advantages of low computational cost

of the kernel function, but also contain various types of graph infor-

mation such as directed edges and labels. Therfore, the WL graph

kernel is very suitable for calculating the similarity between PDG

pairs. Besides, the approximate graph matching based on graph

kernels has been successfully applied in the fields of human face

recognition [12], network analysis [13], and compound classifica-

tion [14].

In this paper, we propose a novel PDG-based code clone detector,

called CCGraph, which can find more PDG-based clones than other

tools and is much faster than those PDG-based tools. This approach

reduces the size of original PDGs at first, and then filters PDG pairs

by a two-stage strategy with characteristic similarities. Finally,

CCGraph identifies clone pairs by an approximate graph matching

algorithm based on WL (Weisfeiler-Lehman) [11] graph kernel

algorithm. To sum up, our study makes the following contributions:

1)We adopt approximate graphmatching algorithm based onWL

graph kernel. WL graph kernel sorts and compresses the labels of

CCGraph: a PDG-based code clone detector with approximate graph matching ASE ’20, September 21–25, 2020, Virtual Event, Australia

all adjacent vertices of each node in each iteration [11], and we can

calculate the similarity of two graphs by comparing the number of

similar nodes in graphs. We design the iteration times according to

the graph diameter, and add the weight of each iteration considering

the distance of the nodes. Our tool can accelerate the comparison

of graph similarity and detect more clones than the state-of-the-art

tools.

2) In the preprocessing stage, we design a two-stage filtering

algorithm. First, we count some numerical characteristics of PDG

for rough filtering, such as the size of PDG, and classify the similar

PDGs into the same category. Then, for each category, we calculate

the similarity of string characteristics like function names based on

𝐽𝑎𝑟𝑜𝑊 𝑖𝑛𝑘𝑙𝑒𝑟 distance [20]. In addition, we optimize the structure

of PDGs by eliminating and merging some irrelative nodes. These

strategies can reduce the size of candidate clone pairs greatly.

3) We present the whole PDG-based clone detector called CC-

Graph, reduce the candidate clone pairs scale in the preprocessing

stage and adopt the approximate graph matching algorithm. It can

detect more PDG-based clones than the latest clone detector Oreo

[15] based on deep learning for Java and be much faster than the

latest PDG-based clone detector CCsharp [9] for C code.

The rest of this paper is structured as follows. Section 2 intro-

duces some concepts and definitions used in our research. Section

3 describes the details of methods proposed in our clone detection

process. Section 4 shows the implementation and experiment of our

tool against some other state-of-the-art tools on some codebases.

Section 5 and 6 summarize the related work and discuss the lim-

itations of our approach. Finally, Section 7 concludes the present

work with a discussion of future work of CCGraph.

2 PRELIMINARIES AND DEFINITIONS
In this section, we give the definitions of some important concepts

and notations used in the detection work, like PDG, subgraph iso-

morphism, and the WL graph kernel which is used in our proposed

method. We also give the definitions of PDG-based clones we need

to detect.

2.1 Program Dependency Graph
A program dependency graph (PDG) is a labeled and directed garph

of the source code to show some dependencies like Figure 2. The

nodes in PDG can be classified into the system and statement nodes.

The system nodes are generated from PDG generation tools, like

function entrance or exit nodes, which is not the specific code

statement. The statement nodes include each statement and its type

for them.

The edges show some dependencies between statement nodes,

such as the data and control dependencies. The control dependency

edge is from a control node to a next node if the condition controls

that the next node will be executed. The data dependency edge is

between two nodes that they all use the same variable or one of

them assigns the variable and the another uses it either directly or

indirectly like pointers. There is one more dependency edge called

execution dependency, which is between two nodes if one of the

nodes may only be executed after the another one.

Definition 2.1. Program Dependency Graph: The PDG for a code

program is represented as 𝐺 = (𝑉 , 𝐸, 𝜇, 𝛿), where V is the set of

nodes in graph, E is the set of edges in graph, 𝜇 : 𝑉 → 𝑆 is a

function assigning types to nodes in graph, 𝛿 : 𝐸 → 𝑆 is a function

assigning dependency types to edges.

2.2 Subgraph Isomorphism
Recently, many PDG-based clone detections define the clone pair

of program 𝑝 and 𝑝 ′ if and only if there is subgraph isomorphism

relationship among their PDGs. The mathematic definition of sub-

graph isomorphism is defined as below.

Definition 2.2. Graph Isomorphism: 𝐺1 (𝑉1, 𝐸1, 𝜇1, 𝛿1) is a graph
isomorphism to 𝐺2 (𝑉2, 𝐸2, 𝜇2, 𝛿2) if and only if there is a bijective

function 𝑓 : 𝑉1 → 𝑉2 and 𝑓 −1 : 𝑉2 → 𝑉1 satisfying:

• 𝜇1 (𝑣) = 𝜇2 (𝑓 (𝑣)) for any 𝑣 ∈ 𝑉1.
• ∀𝑒 = (𝑣1, 𝑣2) ∈ 𝐸1, ∃𝑒 ′ = (𝑓 (𝑣1), 𝑓 (𝑣2)) ∈ 𝐸2 such that

𝛿 (𝑒) = 𝛿 (𝑒 ′).
• ∀𝑒 = (𝑣1, 𝑣2) ∈ 𝐸2, ∃𝑒 ′ = (𝑓 −1 (𝑣1), 𝑓 −1 (𝑣2)) ∈ 𝐸1 such that

𝛿 (𝑒 ′) = 𝛿 (𝑒).

Definition 2.3. Subgraph Isomorphism: 𝐺1 (𝑉1, 𝐸1, 𝜇1, 𝛿1) is a sub-
graph isomorphism to 𝐺2 (𝑉2, 𝐸2, 𝜇2, 𝛿2) if and only if there is an

injective function 𝑓 : 𝑉1 → 𝑉2 that there is a subgraph 𝑆 ⊆ 𝐺2 such

that f is a graph isomorphism from 𝐺1 to 𝑆 .

2.3 Weisfeiler-Lehman Graph Kernel
Mathematically, the method of graph kernels maps graphs to a

vector feature space, and calculates the graph similarity by their

inner product in the vector feature space. In the process of calculat-

ing, it divides a graph into substructures, and any combination of

graph decomposition and substructure isomorphism judgment can

be defined as a new graph kernel.

Definition 2.4. Graph Kernel: G is a finite set of graphs, 𝑅 is a

point product space and the function 𝑘 : (G × G) → 𝑅 is a graph

kernel, then there is a Hilbert space F and a mapping function

𝛾 : G → 𝐹 , for all 𝐺1, 𝐺2 ∈ G, 𝑘 (𝐺1,𝐺2) =< 𝛾 (𝐺1), 𝛾 (𝐺2) >,
where < · , · > means the inner product in Hilbert space.

Generally, given two graphs 𝐺1,𝐺2, and the substructures se-

quences {𝑆1,1, 𝑆1,2, . . . , 𝑆1,𝑛1
} of 𝐺1 and {𝑆2,1, 𝑆2,2, . . . , 𝑆2,𝑛2

} of 𝐺2,

where 𝑆1,𝑖 is the 𝑖
𝑡ℎ

substructure of 𝐺1 and 𝑆2, 𝑗 is the 𝑗𝑡ℎ substruc-

ture of 𝐺2, the graph kernel of 𝐺1 and 𝐺2 can be expressed as

𝑘𝑟 (𝐺1,𝐺2) =
𝑛1∑
𝑖=1

𝑛2∑
𝑗=1

𝜎 (𝑆1,𝑖 , 𝑆2, 𝑗)

where 𝜎 (𝑆1,𝑖 , 𝑆2, 𝑗) = 1 when 𝑆1,𝑖 and 𝑆2, 𝑗 are isomorphism else

𝜎 (𝑆1,𝑖 , 𝑆2, 𝑗) = 0.

Definition 2.5.Weisfeiler-LehmanGraphKernel: Given two graphs

𝐺1 (𝑉1, 𝐸1, 𝜇1, 𝛿1) and 𝐺2 (𝑉2, 𝐸2, 𝜇2, 𝛿2) and iteration number h, af-
ter the ℎ𝑡ℎ times iteration of WL subtree isomorphism algorithm,

we get the structures of two graphs as 𝐺1 (ℎ) = (𝐺1, 𝑙ℎ (𝐺1)) and
𝐺2 (ℎ) = (𝐺2, 𝑙ℎ (𝐺2)). And 𝑙ℎ (𝐺1) is the set of node labels for𝐺1 in

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu

5 2

4 3

1

1

2 5

4 3

21

(a) Given PDG G and G’

5,234 2,35

4,1135 3,245

1,4
1,4

2,45 5,234

4,1235 3,245

2,31,4

(b) Multiple set label sorting

1,4

2,3

2,35

2,45

6

7

8

9

3, 245

4, 1135

4, 1235

5, 234

10

11

12

13

(c) Lable compression

13 8

11 10

6

6

9 13

12 10

76

(d) Reassignment of node labels

Figure 3: Computation of the WL graph kernel for one iteration

the iteration h, the WL graph kernel is expressed as

𝑘
(ℎ)
𝑊𝐿
(𝐺1,𝐺2) = 𝑘 (𝐺1 (0),𝐺2 (0)) + ... + 𝑘 (𝐺1 (ℎ),𝐺2 (ℎ))

𝑘 (𝐺1 (ℎ),𝐺2 (ℎ)) is the base kernel function of𝐺1 and𝐺2, which

calculates the number of same label pairs in node label sets 𝑙ℎ (𝐺1)
and 𝑙ℎ (𝐺2).

Weisfeiler-Lehman (WL) graph kernel [11] is an advanced graph

kernel in recent years. As shown in Figure 3, the WL graph kernel

sorts the labels of all adjacent vertices of each node, compresses

these labels into new shorter label based on a hash algorithm, and

then counts the same original and compressed labels in two graphs.

After one iteration of computation, the compressed labels denote

subtree patterns or sub-structures in graph. For instance, in the

Figure 3 (a), the node (denoted as 𝑣) with label 5 in G and the same

label node (denoted as 𝑣 ′) in G’ have same neighbor nodes with

label 2, 3 and 4. After collecting the neighbor node labels, both

of the label sequences of 𝑣 and 𝑣 ′ are 2,345, which is shown in

Figure 3 (b). Then after the label compression shown in Figure 3

(c), the new label of 𝑣 and 𝑣 ′ is 13. After one iteration of the WL

graph kernel calculating, in the Figure 3 (d), the 𝑣 and 𝑣 ′ have the
same label, which means that the local graph structures around 𝑣

and 𝑣 ′ are same. When most of the nodes of the two graphs have

this kind of similarity, we think that the two graphs are very similar.

2.4 Similarity of Graphs Based on WL Graph
Kernel

After the approximate graph matching, we need to distinguish

whether the original code fragments are clones according to the

kernel value we calculated. Hence, we need to define a measure of

similarity based on the WL graph kernel value after normalizing.

Definition 2.6. Similarity of PDG pairs : Given two program depen-

dency graphs 𝐺1 (𝑉1, 𝐸1, 𝜇1, 𝛿1) and 𝐺2 (𝑉2, 𝐸2, 𝜇2, 𝛿2), we measure

the similarity of PDG pairs by the ℎ times iterations of WL graph

kernel value as

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐺1,𝐺2) =
𝑘
(ℎ)
𝑊𝐿
(𝐺1,𝐺2)
|𝑉1 ∪𝑉2 |

, the similarity value is between 0 and 1, and the code fragments

of 𝐺1 𝑎𝑛𝑑𝐺2 are 𝑐𝑜𝑑𝑒 𝑐𝑙𝑜𝑛𝑒 when the 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐺1,𝐺2) is bigger
than the predefined threshold 𝑇 .

3 PROPOSED METHOD
In this section, we introduce the overview of the proposed method

of clone detection firstly, and then describe the design of the simpli-

fication of PDG structures, the characteristic vector extraction, the

filtering strategies and the approximate graph matching algorithm

based on the WL graph kernel in details.

3.1 Overview
The overview of our proposed method is shown in Figure 4. It con-

sists of two process phases, code preprocessing and clone detection.

Code preprocessing analyzes the source code files, extracts PDGs

in function level, simplifies the PDG structures and filters the candi-

date PDG pairs by characteristic vectors. Clone detection measures

the similarity by calculating the WL graph kernel values of PDG

pairs and identifies the code clone if PDG pairs satisfy the threshold

condition.

CCGraph: a PDG-based code clone detector with approximate graph matching ASE ’20, September 21–25, 2020, Virtual Event, Australia

PDG pairsSource program
files

PDG
generation

Simplification and
filtering

Clone candidates

Approximate
graph matching

based on WL
graph kernel

Clone pairs

Verifying

Preprocessing Clone detection

Program
Dependency

graphs

Figure 4: The overview of the proposed method.

3.2 Simplification of PDG Structures
In the PDG generation, we observed that there are a large number

of system nodes and edges which are not related to code semantic

information. Also, there are some sub-PDGs which link to other

functions because of function calls in source code. Therefore, we

proposed two strategies to simplify the structure of PDGs, elimi-

nating meaningless nodes and merging function call sub-PDGs.

3.2.1 Eliminate meaningless nodes. In the process of PDG gener-

ation, system nodes and some assistant parameter nodes are gen-

reated automatically by the PDG generation tools. These nodes do

not affect the original logical structure of the source code. There-

fore, we simply remove these nodes and the edges connected to

them to reduce the size of PDGs.

3.2.2 Merge function call sub-PDGs. In the PDGs of source code,

the calls to other functions are plotted as a sub-PDGs. Considering

that the codes corresponding to these sub-PDGs are not in the cur-

rent file, we simplify to merge the sub-PDG part to one function

call node. This merging operation does not lose any structure in-

formation of the original PDG but greatly reduce the size of PDGs.

We name the new node type 𝐹𝑢𝑛_𝐶𝑎𝑙𝑙 to represent the function

call sub-PDGs in original PDGs.

3.3 Filtering of PDG Pairs
Clone detection makes PDG pair-wise comparison, and the scale

of PDG pairs increases exponentially with the number of PDGs.

Therefore, it is necessary to filter PDG pairs for reducing the time

consuming of clone detection.

We mainly filter PDG pairs from two aspects. On the one hand,

we consider the size of PDG directly, such as the number of nodes

and edges in PDGs. And for the case that the scale ratio of two

graphs is too big, we filter these PDG pairs as other cloning detec-

tion methods. On the other hand, we adopt the filtering strategies

according to some important informations in PDGs, such as the

data type of input and output. The overall of PDG’s characteris-

tics are listed in Table 1 and the filtering process is structured as

following subsections, which is also shown in algorithm 1.

3.3.1 Numerical similarity filtering. For the numerical part of the

characteristic vector, we filter PDG pairs by size of PDG and scale

ratio firstly, then calculate the cosine similarity between two nu-

merical vectors. PDG pairs are divided into categories according to

their numerical similarity.

Algorithm 1 Characteristic Vectors Filtering

Input: 𝑃 is characteristic vector of code PDG𝐺 . 𝑃 ′ is characteristic
vector of code PDG𝐺 ′. 𝐿 is threshold of node number in PDG

characteristic. 𝑇 is threshold of PDG pair’s scale radio. 𝐺𝑆 is

threshold of the string similarity and 𝐺𝑁 is threshold of the

numerical similarity of the characteristic vectors.

Output: 𝑅 is the candidate PDG pairs for the clone detection

1: function Filter(𝐺,𝐺 ′, 𝑃, 𝑃 ′, 𝐿,𝑇 ,𝐺𝑆 ,𝐺𝑁)

2: for each code PDG 𝐺 and 𝑃 in clone codes do
3: for each code PDG 𝐺 ′ and 𝑃 ′ in clone codes do
4: if 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐺) < 𝐿 or 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐺 ′) < 𝐿 then
5: PDG pair (𝐺,𝐺 ′) is filtered
6: else if 𝑚𝑖𝑛(𝐺,𝐺 ′)/𝑚𝑎𝑥 (𝐺,𝐺 ′) < 𝑇 then
7: PDG pair (𝐺,𝐺 ′) is filtered
8: else if number similarity of (𝑃, 𝑃 ′) > 𝐺𝑆 then
9: 𝑅 ← 𝑅 ∪ (𝐺,𝐺 ′)
10: CONTINUE

11: else if string similarity of (𝑃, 𝑃 ′) > 𝐺𝑁 then
12: 𝑅 ← 𝑅 ∪ (𝐺,𝐺 ′)
13: end if
14: end for
15: end for
16: end function

Table 1: The Characteristic Vector of PDG

Numerical characteristics Description

NumOfCtrlEdges The control dependency edges.

NumOfExcEdges The excute dependency edges.

NumOfDataEdges The data dependency edges.

NumOfDeclNodes The variable declaration nodes.

NumOfAssignNodes The assignment nodes.

NumOfCtrlNodes The control nodes.

NumOfStateNodes The function state nodes.

NumOfOtherNodes other types nodes.

NumOfReference The number of reference variables.

String characteristics Description

ReturnPara The return parameters.

IntroPara The incoming parameters.

Name The function name.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu

• Size filtering: In real code dataset, there are many functions

that only have a return statement. This kind of clones have

no reference value for practical application. So, we focus

on those PDG pairs which have meaningful size. And in

the detailed implementation, we set the size threshold as 6

lines, which is also a common filter standard of other clone

detections like CCAligner [17].

• Scale ratio filtering: We need to match PDGs in pairwise,

and the pair have no point in real-world if the scale ratio of

two PDGs is too big, like one PDG size is 10 times than the

other one. We filter the pairs if the scale ratio of two PDGs

is bigger than the specific threshold.

• Numerical similarity filtering: We extract the numerical vec-

tors according to the characteristics of PDGs like the num-

ber of different kinds of nodes and edges. Node types are

divided into variable declaration, assignment, control state-

ment, function call and other kind of statements. Connecting

edges are classified as control dependency edge, data depen-

dency edge and execution dependency edge according to the

dependency relationship. Then we filter those PDG pairs if

the cosine similarity of two vectors do not meet the thresh-

old we set. According to the results of repeated experiments,

we set a threshold of 0.9 for numerical similarity filtering.

3.3.2 String similarity filtering. In the characteristic vectors of

PDGs, some dimensions are string variables, like the function name,

input parameters, output variables. For each category classified

by numerical similarity, we need to calculate the string similarity

between these string part of vector to filter some PDG pairs. Since

the string parts of vectors are short strings and the 𝐽𝑎𝑟𝑜 𝑊 𝑖𝑛𝑘𝑙𝑒𝑟

algorithm has a great effect on short text similarity calculations [14,

15], we choose the 𝐽𝑎𝑟𝑜 𝑊 𝑖𝑛𝑘𝑙𝑒𝑟 distance ratio [20] to measure the

string similarity. The Jaro-Winkler algorithm gives the starting part

a higher score for the same string, which defines a prefix range

𝑝 . For the two strings to be matched, the prefix part has the same

length as the partial string of length 𝐿. Considering the diversity

of string variables in reality, we only filter those PDG pairs which

𝐽𝑎𝑟𝑜 𝑊 𝑖𝑛𝑘𝑙𝑒𝑟 distance ratio less than 0.5.

• Jaro Distance: Jaro distance 𝑑 𝑗 of given strings 𝑎, 𝑏 is 𝑑 𝑗 =

1

3
(𝑚|𝑎 | +

𝑚
|𝑏 | +

(𝑚−𝑡)
𝑚), the𝑚 is the number of matching char-

acters, and 𝑡 is half the number of transpositions, |𝑎 | and |𝑏 |
is the length of string 𝑎 and 𝑏.

• Jaro Winkler Distance: Jaro Winkler distance 𝑑𝑤 of give

strings 𝑎, 𝑏 is 𝑑𝑤 = 𝑑 𝑗 + 𝐿 ∗ 𝑃 (1 − 𝑑 𝑗), 𝑑 𝑗 is the jaro distance

of given strings 𝑎 and 𝑏, 𝐿 is the length of the prefix partial

match, 𝑃 is a range factor constant used to adjust the weight

of the prefix match, but the value of 𝑃 cannot exceed 0.25,

because the final score may exceed 1 point. The standard

default setting of 𝐽𝑎𝑟𝑜 𝑊 𝑖𝑛𝑘𝑙𝑒𝑟 is 𝑃 = 0.1.

3.4 Approximate Graph Matching Based onWL
Graph Kernel

After the simplification of PDG structures and filtering of PDG pairs,

we adopt the approximate graph matching algorithm to measure

the similarity between the PDG pairs.

Considering the specialty of PDGs, we choose to implement the

approximate graph matching algorithm based on WL graph kernel.

In all kinds of graph kernels, WL graph kernel can be applied to

directed and labeled graphs, and it is able to process the attributes

of nodes in graphs. WL graph kernel has better time-consuming

performance than the traditional kernels like Random-Walk or

Shortest-Path graph kernel [11]. Also, there are open source imple-

mentations of WL
1
graph kernel used in bioinformatics to compare

protein structure and we can easily apply it to our tool with a sec-

ondary development. SinceWL graph kernel has great classification

performance and it is one of the best graph kernels at present, we

choose to adopt our approximate graph matching algorithm based

on WL graph kernel.

Algorithm 2 Clone Detection With WL Graph Kernel Testing of

Two Graphs

Input: the PDG pair (𝐺,𝐺 ′), all nodes 𝑣 and labels 𝑙 (𝑣) of 𝑣 in 𝐺

and𝐺 ′;𝑁 (𝑣) is the set of 𝑣 ′𝑠 neighbor nodes;𝑚 is the number of

iterations of WL algorithm;𝑇 is the threshold of PDG similarity

of 𝐺 and 𝐺 ′.
Output: 𝑅 is the result set of PDG pairs after the clone detection

1: function Clone(𝐺,𝐺 ′, 𝑣, 𝑙 (𝑣), 𝑁 (𝑣),𝑚,𝑇)

2: for each pair (𝐺,𝐺 ′) in candidate pairs do
3: for 𝑖𝑡ℎ iteration in𝑚 times do
4: for each node 𝑣 in 𝐺 and 𝐺 ′ do
5: 𝑀 (𝑣) ← ∑

(𝑙 (𝑢) |𝑢∃𝑁 (𝑣))
6: 𝑠 (𝑣) ← 𝑀 (𝑣) sorted by ascending order

7: 𝑠 (𝑣) ← 𝑙 (𝑣) + 𝑠 (𝑣)
8: 𝑙 (𝑣) ← 𝑓 (𝑠 (𝑣))
9: WHEN 𝑓 :

∑
(∗) →

∑
10: STATISFY 𝑓 (𝑠 (𝑣)) = 𝑓 (𝑠 (𝑤))
11: if and only if 𝑠 (𝑣) = 𝑠 (𝑤)
12: end for
13: 𝑤𝑖 ← (𝑚 − 𝑖 + 1)/𝑚
14: 𝑘𝑖 = 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑠𝑎𝑚𝑒𝑙𝑎𝑏𝑒𝑙 (𝑣))/𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑡𝑜𝑡𝑎𝑙 (𝑣))
15: end for
16: 𝑘 ← ∑

(𝑘𝑖 ∗𝑤𝑖)
17: if 𝑘 > 𝑇 then
18: 𝑅 ← 𝑅 ∪ (𝐺,𝐺 ′)
19: end if
20: end for
21: end function

The steps of our proposed algorithm is described in detail as

following and shown in Algorithm 2:

• Hash the label of each node in the PDG according to the

grammar category as the initial label of the node.

• Set the ℎ iterations for the WL algorithm. In the ℎ iterations,

each iteration collects the labels of the current node’s neigh-

bors as a sequence, and compresses the label sequence into

a new label by using local sensitive hashing algorithm.

• If the labels of the two nodes are same after the iteration,

it is considered that the subtrees with the two nodes as the

root node and the height of ℎ are isomorphic.

1
https://github.com/BorgwardtLab/GraphKernels.

CCGraph: a PDG-based code clone detector with approximate graph matching ASE ’20, September 21–25, 2020, Virtual Event, Australia

• Calculate the number of same node pairs between two PDGs,

which is also the graph kernel value. If the graph kernel

values of the two PDGs satisfy the threshold range, the two

PDGs are considered as PDG-based code clone candidates.

Furthermore, considering the different diameters of different

clone PDGs, we dynamically set the iterations number according

to the diameter of the smaller PDG, and count the number of nodes

with the same label between PDGs after each iteration. In addition,

we add the weight factor (ℎ − 𝑛 + 1)/ℎ to the 𝑛𝑡ℎ iteration to give

higher weight to the lower iterations because each node in source

code is more affected by its neighbors than the nodes far away.

3.5 Verifying
After the approximate graph matching based on WL graph kernel,

we get the kernel value of PDG pairs. This step is to vefity whether

the candidates are code clones.

For each PDG pair, we calculate the WL graph kernel value

𝑘
(ℎ)
𝑊𝐿
(𝐺1,𝐺2) in the approximate graph matching, and we measure

the similarity by the ratio of the kernel value to the total number

of nodes in two PDGs shown in 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 2. When the similarity

exceed the threshold we set before, we consider the code fragments

of the PDG pair are 𝑐𝑜𝑑𝑒 𝑐𝑙𝑜𝑛𝑒 . In order to further verify whether

two PDGs are cloned or not, we use the asymmetric coefficient of
𝐷𝑖𝑐𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 [21] from another point of view, which is defined

as follows:

𝑠𝑖𝑚(𝐺1,𝐺2) =
𝑘
(ℎ)
𝑊𝐿
(𝐺1,𝐺2)

𝑚𝑖𝑛(|𝑉1 | , |𝑉2 |)
.

where𝑉1 and𝑉2 are the node sets of PDG𝐺1 and𝐺2. The similarity

threshold is chosen with best results among plenty of repeated

experiments. Therefore, we verify the two PDGs are code clones

when their similarity is greater than or equal to 0.9.

4 EVALUATION
In this section, we design and implement the experiments of our

clone detection CCGraph and empirical evaluation against other

state-of-the-art clone detectors. Firstly, we begin by introducing

the environment configuration of our experiments. We introduce

the datasets used in experiments in detail and explain the reasons

for choosing these datasets.

4.1 Experimental Configuration
Since most of current PDG-based clone detectors are commercial

that are not open source, we choose the open source and executable

tools to be compared with our approach. For C code, we choose the

latest PDG-based clone detector CCSharp [9] for comparison both

on artificial datasets and real-world datasets. However, CCSharp

can not be implemented to Java code. For Java code, there is no

targeted PDG-based clone detector. There is a clone detector Oreo

[15] based on deep learning to be regarded as the candidate. In the

process of model training, Oreo uses some informations of PDG as

a part of feature input, so it can find some PDG-based code clones.

Therefore, we choose Oreo for comparison on Java datasets. We

also compare CCGraph with other baselines such as token-based

(SourcererCC, in order to find out more Type-3 clones, we set a 80%

threshold), AST-based (Deckard,also with a 80% threshold) on Java

datasets. In addition, there is no standard PDG tested benchmark

to measure the accuracy and recall rate of clone detection methods.

For this, we manually check the experiment results on the tested

datasets.

For the PDG generation, we use Frama-C
2
[23] to generate PDGs

of C code. For Java programs, we choose the Java PDG generator

TinyPDG
3
[24] based on an open source library. All PDGs of C and

Java code are unified to .𝑑𝑜𝑡 file fomat. After the PDG generation,

we used Python scripts to parse .𝑑𝑜𝑡 files and transform these files

into the specified format for subsequent graph matching. In the

implementation of approximate graph matching, we used Python

and C++ to calculate similarity based on some relative libraries. All

experiments are executed on a samemachine with Ubuntu 14.04LTS

operation system with a quad-core CPU and 8GB of memory.

4.2 Experimental Datasets
We performed experiments on CCGraph against the CCSharp [9]

on C code and Oreo [15] on Java code on several code datasets.

These datasets include real-world and artificial code datasets. Since

the PDG generation can only be applied to compilable code, we

choose some high quality real-world code datasets and develop

some artificial code datasets from the real-world codes by kinds

of disguises to simulate the generation of code clones in daily pro-

gramming [21, 22]. The details of these code datasets are shown in

the Table 2, including their LoC (Line of Code), number of functions

and description.

Table 2: The Details of Datasets

Datasets LoC Functions Description

BCB-5 4374 186 Decompress zip archive.

BCB-11 8384 338 Initialize Java Eclipse projects.

BCB-15 9895 478 Load custom font.

BCB-38 9572 481 Get MAC address string.

Less 19233 286 Linux text viewer.

PostgreSQL 86096 1134 dataset server.

Artificial-1 1658 100 Generated artificial dataset.

Artificial-2 20157 384 Generated artificial dataset.

For C code, we choose the 𝑙𝑒𝑠𝑠 and severalmodules of 𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿

datasets. The 𝑙𝑒𝑠𝑠 dataset is used in CCSharp [9], GPLAG [5] and

the 𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿 program is also common used in kinds of clone

detector. And we also generate two artificial datasets based on some

real-world dataset like leetcode or cJSON by using a mixture of four

types disguises [25]: format changing (i.e. change spaces, comments

and layouts), renaming/type chaning (i.e. rename varibles, func-

tions), reordering statements, and control substitution (i.e. replacing

𝑤ℎ𝑖𝑙𝑒 loops with 𝑓 𝑜𝑟). These disguises do not affect the overall syn-

tactic structure and PDG dependencies in original code, but may

not be detected by those tools using subgraph isomorphism.

For Java code, we choose BigCloneBench, which is common

used in all kinds of clone detectors. BigCloneBench [27] is a large

benchmark of manually validated clones by mining the big real-

world dataset IJaDataset-2.0 [28] (25,000 Java systems). The current

2
http://frama-c.com/index.html.

3
https://github.com/YoshikiHigo/TinyPDG

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu

public release version of BigCloneBench contains 8 million clones

of 43 distinct functionalities [29]. Considering the BigCloneBench

is too big for us to calculate the accuracy and recall of our method,

we randomly select several small functionalities.

4.3 Experimental Results
4.3.1 Efficiency of PDG Structure Simplification. We have tested

the effect of PDG structure simplification on several typical datasets.

These strategies effectively simplify PDGs and do not damage the

original semantic information and the results of efficiency are

shown in Table 3. According to the research [16], the time costed

by graph matching grows exponentially with the growth of the

numbers of nodes and edges in graph. Therefore, the reduction of

PDG size by removing meaningless nodes and merging function

call sub-PDGs is very beneficial to the following processes of clone

detection.

Table 3: Efficiency of PDG Structure Simplification

Datasets Language

Size of Size of Ratio of

original files simplification simplification

(A) files (B) (B/A)

Less C 871KB 732KB 0.84

PostgreSQL C 19.7MB 9.6MB 0.49

Artificial-1 C 436KB 408KB 0.94

Aritificial-2 C 1.1M 891KB 0.79

Datasets Language

Size of Size of Ratio of

original files simplification simplification

(A) files (B) (B/A)

BCB-5 Java 559KB 482KB 0.86

BCB-11 Java 955KB 799KB 0.84

BCB-15 Java 1.3MB 1.1MB 0.85

BCB-38 Java 1.2MB 998KB 0.81

4.3.2 Efficiency of Filtering Strategies. The filtering phase is very
important in the whole clone detection. We have implemented the

heuristic filtering strategies and the results of filtering efficiency

are shown in Table 4. The filtering ratio refers to the number of

PDG pairs after filtering divided by the number of total PDG pairs.

It can exclude the majority of candidate PDG pairs, and helps to

accelerate the graph matching process later.

In order to ensure the accuracy of our filtering strategies, we

conducted a sample check on the filtered PDG pairs. We randomly

seletected 20 PDG pairs for three times from the filtered PDG pairs

of each dataset, and determine the number of clone pairs misfiltered

in the 20 PDG pairs. According to the results shown in Table 5, the

number of our misfiltered clone pairs are very small, which also

verifies the effectiveness of our filtering strategies.

4.3.3 Results of Code Clone Detection. We evaluate CCGraph with

the total clone quantity, clone quality, time cost and scalability. The

total clone quantity is the total number of clone pairs detected by

tools, which is shown in Table 6. The clone quality includes the

precision, recall rate and the F1-score we calculated, which is shown

Table 7 and Table 8. The total clone result used in the recall rate is

the union of the results generated by all tools. Also, we compare

the time cost of the whole clone detection process with CCSharp

Table 4: Efficiency of Filtering Strategies on Datasets

Datasets Language

Theoretical PDG pairs Ration of

PDG pairs after filtering filtering

(A) (B) (B/A)

Less C 81796 1316 1.61%

PostgreSQL C 1285956 22247 1.73%

Artificial-1 C 10000 562 5.62%

Aritificial-2 C 147456 2708 1.84%

Datasets Language

Theoretical PDG pairs Ration of

PDG pairs after filtering filtering

(A) (B) (B/A)

BCB-5 Java 34596 596 1.72%

BCB-11 Java 114244 1805 1.58%

BCB-15 Java 228484 3309 1.45%

BCB-38 Java 231361 3424 1.48%

Table 5: The Number of Misfiltered Clone Pairs of 3 Sam-
pling Examinations

Datasets Language

1st 2nd 3rd

experiment experiment experiment

Less C 0/20 0/20 0/20

PostgreSQL C 0/20 1/20 0/20

Artificial-1 C 0/20 0/20 0/20

Aritificial-2 C 0/20 0/20 0/20

Datasets Language

1st 2nd 3rd

experiment experiment experiment

BCB-5 Java 0/20 0/20 0/20

BCB-11 Java 0/20 1/20 0/20

BCB-15 Java 0/20 0/20 0/20

BCB-38 Java 0/20 0/20 1/20

and measure the scalability on datasets of different scales, which

results are shown in Figure 5 and Table 9.

Total number of clones. We generate PDGs and detect clones in

function granularity. We measure the total number of clones by the

number of clone pairs against other tools. In the PDG filtering stage,

we exclude those code which number of lines are less than 6. And

from the clone results shown in Table 6, we know that CCGraph

has obvious advantages in the number of clone pairs than CCSharp

[9] in all𝐶 datasets and Oreo [15] in all 𝐽𝑎𝑣𝑎 datasets. As shown in

Table 6, our approach can find more than twice as many PDG-based

clone pairs on Artificial-2 dataset as CCSharp. And even in the

worst case, we can find 30 percent more PDG-based clone pairs

than Oreo. The reason is that we adopt the approximate graph

matching, reduce the requirement of clone matching and find some

clone pairs missed by other tools.

Clone quality. Clone quality includes precision, recall rate and

F1-score value. And we choose those small code datasets to make

it easier to calculate the precision and recall rate. For precision, we

manually check and evaluate all the detected clone pairs to judge if

they are real clones, and calculate the ratio of all true positive code

CCGraph: a PDG-based code clone detector with approximate graph matching ASE ’20, September 21–25, 2020, Virtual Event, Australia

0

5

10

15

20

25

30

35

Less PostgreSQL Artificial-1 Artificial-2

CCSharp CCGraph

(a) In preprocessing stage(min)

0

2

4

6

8

10

12

14

16

Less PostgreSQL Artificial-1 Artificial-2

CCSharp CCGraph

(b) In graph matching stage(s)

Figure 5: Time cost comparison between CCSharp and CCGraph

Table 6: The Number of Clones Detected by CCGraph
Against Other Tools

Dataset Language CCSharp CCGraph

Less C 12 23
PostgreSQL C 149 297
Artificial-1 C 105 183
Artificial-2 C 74 162
Dataset Language Oreo CCGraph

BCB-5 Java 47 76
BCB-11 Java 129 161
BCB-15 Java 75 138
BCB-38 Java 102 131

clones to all clones we detected.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
where 𝑇𝑃 is the true positive PDG-based code clones reported by

the tool, and 𝐹𝑃 refers the wrong clone pairs we detected. For recall

rate, we define

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
where 𝑇𝑃 is same as precision definition, 𝐹𝑁 refers the true clone

pairs we missed, and the denominator 𝑇𝑃 + 𝐹𝑁 is the union result

of the two tools as the total detected clones (removing duplicate

and 𝐹𝑃 elements). We also define

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

From the results shown in table 7 and 8, we find that our results

are slightly less than CCSharp and Oreo in accuracy, when we also

maintain a high level of accuracy which is acceptable in reality.

The little loss of accuracy is because of the examples that the two

PDGs share almost the same data and control dependencies in their

structure but the function of their programs are obviously different.

But our recall rate is significantly higher than CCShrap and Oreo. In

the best case, our recall rate is almost 40% higher than CCsharp and

Oreo. In addition, we calculate the F1-score value, and CCGraph is

at least 10% better than CCSharp and Oreo on each dataset.

Table 7: Clone Results on C Code Dataset

Datasets Tools Accuracy Recall F1-score

Less

CCSharp 0.92 0.52 0.64

CCGraph 0.89 0.81 0.85

PostgreSQL

CCSharp 0.99 0.56 0.72

CCGraph 0.91 0.85 0.83

Artificial-1

CCSharp 0.94 0.63 0.75

CCGraph 0.90 0.80 0.85

Artificial-2

CCSharp 0.99 0.42 0.59

CCGraph 0.92 0.81 0.86

Time cost and scalability. Considering the PDG-based clone de-

tection is more time-consuming than other types clone detection

tools and the time of training datasets in Oreo [15] is hard to mea-

sure, we only compare the time cost with CCSharp [9]. We divide

the overall time cost into preprocessing and graph matching time

cost. And the time cost results are shown in Figure 5. The prepro-

cessing stage includes PDG generation, structure optimization and

filtering. From the results shown in Figure 5, CCGraph reduces the

time cost both on preprocessing and graph matching stages, and

accelerates the graph matching greatly than CCSharp [9].

Also, to ensure that CCGraph can be extended to larger code

datasets than CCSharp, we compare the runtime of the two tools

on datasets of different sizes. From the results shown in Table

9,CCGraph is much slower than the token-based detector Oreo

because of the high time-consuming of graph algorithms. However,

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu

Table 8: Clone Results on Java Code Dataset

Datasets Tools Accuracy Recall F1-score

BCB-5

SourcererCC 1 0.02 0.03

Deckard 0.22 0.35 0.27

Oreo 0.94 0.63 0.75

CCGraph 0.87 0.94 0.90

BCB-11

SourcererCC 0.88 0.08 0.14

Deckard 0.19 0.32 0.24

Oreo 0.96 0.73 0.80

CCGraph 0.96 0.91 0.93

BCB-15

SourcererCC 0.75 0.03 0.05

Deckard 0.24 0.22 0.23

Oreo 0.96 0.56 0.71

CCGraph 0.86 0.92 0.89

BCB-38

SourcererCC 1 0.09 0.16

Deckard 0.29 0.30 0.29

Oreo 0.98 0.66 0.79

CCGraph 0.95 0.83 0.89

CCGraph is than CCSharp, the PDG-based detector on all datasets,

and it can also run normally on large-scale datasets, while CCSharp

can not be extended to large-scale datasets at the level of 50𝑀 lines

of code. This also shows that CCGraph has better scalability than

CCSharp at least.

Table 9: Time Cost of CCGraph and CCSharp on Datasets of
Different Sizes

LoC 10K 1M 10M 30M 50M

CCSharp 14s 1h12m3s 8h1m18s – –

Oreo 2s 4m22s 24m12s 2h11m30s 4h36m12s

CCGraph 4s 15m10s 2h21m10s 7h22m12s 17h48m21s

5 RELATEDWORK
There have been many kinds of code clone detection methods in the

literature, Rattan et al. [30] summarized many tools in his research.

These methods can be divided into text-based [31, 32, 33, 34], token-

based [16, 35, 36, 37], AST-based [38, 39], PDG-based [5, 9, 41, 42,

43], metric-based [44, 45, 46] and others like deep learning [22, 47,

48, 49].

Among the text-based code clone detections, the representative

work compared the code fragments in the form of text. Baker [31]

proposed a parametric matching algorithm, regarded the code line

as a long string, and used the string matching algorithm to detect

completely consistent code clones. NiCad [33] detected the poten-

tial code clones using the longest common string subsequences

comparison. Johnson [34] developed the clone detection by a fin-

gerpringting technique. However, these clone detections based on

text can only detect those exactly same code clones or clones with

high text similarity. Considering the various practical clone detec-

tion scenarios, the industry pays more attention on PDG-based

clone detections recently [30].

Among the token-based code clone detections, they extracted

the tokens of source code by lexical analysis tools firstly, and then

compared thosed tokens instead of keywords since tokens can tol-

erate more different identifiers. CCFinder [35] is a popular clone

detector based on token, but it does not support detecting the struc-

tural similarity of code fragments. CCAligner [17] is good at those

clones with relatively concentrated changes but it will misses many

PDG-based clones which CCGraph can detect. SourcererCC [38]

performed great in detecting format transformation and renaming

changes, but only limited to the token similarity. This also means

that they are not suitable for the detection of PDG-based clones.

Among the AST-based code clone detections, CloneDR [39] and

Deckard [40] transformed the code into abstract syntax tree (AST)

and detected the similar subtrees to find code clones. But the trans-

formation lost much structure information of code and this may

lead to the missing of many code clones.

Among the PDG-based clone detections. Duplix [41] and PDG-

DUP [42] both detected PDG-based clones using program slicing

and subgraph isomorphism matching. And these methods all suf-

fered from high time consuming and missed many clones, which

can not be applied to large scale code datasets. To improve the

time performance, Sargsyan et al. [43] modified PDG generated

by LLVM through removing isolated nodes, GPLAG [5] used a

lossy filter to reduce the plagiarism scale by characteristic vectors,

CCSharp [9] proposed some new PDG modification and filtering

stragegies. However, these PDG-based clone methods only applied

some simple filtering strategies, and used the exact graph matching

algorithm like subgraph isomorphism to detect PDG-based clones.

These methods still have a unacceptable time consumption and

poor scalabilities. alse they have a big loss of code clones.

Among the metric-based clone detections, they extracted the

charateristic vectors of source code and calculated the vector sim-

ilarities to detect code clones. Patenaude et al. [44] divided the

code to different categories using the metrics. Balazinska et al. [45]

and Mayrand et al. [46] both extracted the vectors from the AST

of source code. These methods based on metrics are very fast on

detecting clones but they have high false positive rate and miss

much clones because of the rough comparison.

There also exists some other techniques for clone detection, such

as detections based on deep learning techniques and code behaviors.

Wei et al. [47] proposed an approach to learn the representations

and Hamming distance of source code and detected code clones.

White et al. [48] proposed a model to detect code clones by learning

the discriminating features of source code. Yu [50] used a new tree-

based convolution to detect semantic clones, by capturing both

the structural information of a code fragment from its AST and

lexical information from code tokens. Oreo [15] and DeepSim [22]

used the clones that are almost identical or very similar to train

the deep learning model, the ability of detecting clones with large

difference is limited. The deep learning methods always have too

much dependency on the training data and lack interpretability,

which may not suitable for some special scenarios. The experiments

in Section 4 show that CCGraph can find more PDG-based code

clones than Oreo.

CCGraph: a PDG-based code clone detector with approximate graph matching ASE ’20, September 21–25, 2020, Virtual Event, Australia

6 LIMITATIONS
There are also some limitations in our research work. One limitation

is that there is no any opened and standard benchmark datasets

for PDG-based clone detection methods. We can not compare our

approach with other clone detectors on any unified datasets. There-

fore, we need to perform our experiments on the code datasets

to manually verify the accuracy and recall rate of clone results.

Another limitation is that the existing PDG generators need to be

improved. Now both of the PDG generation of C code and Java

code can only be suited to the compliable programs. This requires

that the test datasets must be a complete compilable program and

also limits the scope of PDG-based clone detection. Therefore, we

need to develop a PDG generator for code segments. In this way,

our approach can be more widely processed.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a PDG-based clone detection work with

approximate graph matching algorithm called CCGraph. We in-

troduce the preprocessing stage to optimize the structure of PDGs

and filter the scale of candidate clone pairs by a two-stage strategy.

Moreover, we design the approximate graph matching algorithm

based on WL graph kernel to detect the clone pairs. Finally, we

evaluate CCGraph with clone quantity, clone quality and scalability

against Oreo [15] and CCSharp [9]. The experiment results show

that our method perform the better recall rate and F1-score value

while maintaining a high accuracy.

In the future work, we plan to further improve the performance

of CCGraph. And we will consider investigating the PDG genera-

tion of more types of programming languages. Besides, we want to

integrate the CCGraph into the code development and management

systems. Meanwhile, we can develop some downstream applica-

tions based on CCGraph, such as software structure analysis, bug

detection and other software analysis applications.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation

of China (Grant No.61672480 and No. 61972373) and the Program for

Excellent Graduate Students in Collaborative Innovation Center of

High Performance Computing. The research of Dr. Xue is supported

by CAS Pioneer Hundred Talents Program.

REFERENCES

[1] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development.
IEEE, 7-7.

[2] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano

Di Penta. 2010. An empirical study on the maintenance of source code

clones.Empirical Software Engineering 15, 1 (2010), 1–34.
[3] Yun Lin, Zhenchang Xing, Xin Peng, Yang Liu, Jun Sun, Wenyun Zhao and

Jinsong Dong. 2014. Clonepedia: Summarizing code clones by common syntactic

context for software maintenance. In IEEE International Conference on Software
Maintenance and Evolution. IEEE, 341-350.

[4] Jingyue Li and Michael D. Ernst. 2012. CBCD: Cloned buggy code detector. In

Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 310-320.

[5] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: detection of

software plagiarism by program dependence graph analysis. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 872–881.

[6] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.

2007. Comparison and evaluation of clone detection tools.IEEE Transactions on
software engineering, 33(9), 577-591.

[7] David S Johnson. 1987. The NP-completeness column: An ongoing guide. Journal
of algorithms, 8(2), 285-303.

[8] Mark Gabel, Lingxiao Jiang and Zhendong Su. 2008. Scalable detection of semantic

clones. In Proceedings of the 30th international conference on Software engineering.
ACM, 321-330.

[9] Min Wang, Pengcheng Wang, Yun Xu. 2017. CCSharp: An efficient three-phase

code clone detector using modified PDGs. In 24th Asia-Pacific Software Engineer-
ing Conference (APSEC). IEEE, 100-109.

[10] Navarin N, Sperduti A. 2017. Approximated Neighbours MinHash Graph Node

Kernel. European Symposium on Artificial Neural Networks Computational Intelli-
gence and Machine Learning, ESANN, 281-286.

[11] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn

and Karsten M. Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research, 12(Sep), 2539-2561.

[12] Foggia Pasquale, Percannella G, Vento M. 2014. Graph matching and learning in

pattern recognition in the last 10 years. International Journal of Pattern Recognition
and Artificial Intelligence, 28(01), 1450001.

[13] Ya Jun, Liu Z S, Chang, Q. 2016. The network attack graph analysis based on

graph kernel. Journal of Military Communications Technology, Vol.37: 20-25.
[14] Gaüzère B, Brun L, Villemin D. 2011. Two New Graph Kernels and Applications

to Chemoinformatics. In International Conference on Graph-based Representations
in Pattern Recognition.

[15] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu, Pierre Baldi, and Cristina

Lopes. 2018. Oreo: Detection of Clones in the Twilight Zone. In Proceedings
of the 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE’18). ACM,

354–365.

[16] Krinke Jens. 2001. Identifying similar code with program dependence graphs. In

Proceedings Eighth Working Conference on Reverse Engineering. IEEE, 301-309.
[17] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, Chanchal K Roy. 2018.

CCAligner: a token based large-gap clone detector. In Proceedings of the 40th
International Conference on Software Engineering. ACM, 1066-1077.

[18] William W Cohen, Pradeep Ravikumar, and Stephen E Fienberg. 2003. A Com-

parison of String Distance Metrics for Name-Matching Tasks. IIWeb, Vol. 73-78.
[19] Van der Loo and Mark PJ. 2014. The stringdist package for approximate string

matching.The R Journal 6.1, 111-122.
[20] Feigenbaum James. 2016. JAROWINKLER: Stata module to calculate the Jaro-

Winkler distance between strings.

[21] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern information re-

trieval.ACM press New York,Vol. 463..
[22] Gang Zhao and Jeff Huang. 2018. Deepsim: deep learning code functional simi-

larity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, 141-151.

[23] Cuoq P., Kirchner F., Kosmatov N., Prevosto V., Signoles J. and Yakobowski B.

2012. Frama-c. In International Conference on Software Engineering and Formal
Methods. Springer,233-247.

[24] Higo Yoshiki, and Shinji Kusumoto. 2011. Code clone detection on specialized

PDGs with heuristics. In European Conference on Software Maintenance and
Reengineering. IEEE, 75-84.

[25] Gang Zhang, Xin Peng, Zhenchang Xing, and Wenyun Zhao. 2012. Cloning

practices: Why developers clone and what can be changed. In IEEE International
Conference on Software Maintenance (ICSM). IEEE, 285-294.

[26] Yun Lin, Zhenchang Xing, Yinxing Xue, Yang Liu, Xin Peng, Jun Sun. 2014.

Detecting differences across multiple instances of code clones. In Proceedings of
the 36th International Conference on Software Engineering. ACM, 164-174.

[27] Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evaluating Clone Detection Tools

with BigCloneBench. In Proceedings of the 31st International Conference on Soft-
ware Maintenance and Evolution (ICSME 2015). IEEE, 131-140.

[28] Ambient Software Evoluton Group. (2013). IJaDataset 2.0. http://secold.org/

projects/seclone.

[29] Svajlenko Jeffrey and Chanchal K. Roy. 2016. Bigcloneeval: A clone detection tool

evaluation framework with bigclonebench. In 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 596-600.

[30] Rattan Dhavleesh, Rajesh Bhatia, and Maninder Singh. 2013. Software clone

detection: A systematic review. Information and Software Technology 55.7 (2013),
1165-1199.

[31] Baker Brenda S. 1997. Parameterized duplication in strings: Algorithms and an

application to software maintenance. SIAM Journal on Computing 26.5 (1997),
1343-1362.

[32] Baker Brenda S. 1995. On finding duplication and near-duplication in large

software systems. In Proceedings of 2ndWorking Conference on Reverse Engineering.
IEEE, 86-95.

[33] Cordy James R. and Chanchal K Roy. 2011. The NiCad clone detector. In 2011
IEEE 19th International Conference on Program Comprehension. IEEE, 219-220.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu

[34] Johnson J Howard. 1994. Substring Matching for Clone Detection and Change

Tracking.ICSM. Vol. 94, 120-126.
[35] Kamiya Toshihiro, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a

multilinguistic token-based code clone detection system for large scale source

code.IEEE Transactions on Software Engineering 28.7 (2002), 654-670.
[36] Zhenmin Li, Shan Lu, Suvda Myagmar and Yuanyuan Zhou. 2004. CP-Miner: A

Tool for Finding Copy-paste and Related Bugs in Operating System Code.OSdi.
Vol. 4. No. 19, 289-302.

[37] Göde Nils and Rainer Koschke. 2009. Incremental clone detection. In 2009 13th
European Conference on Software Maintenance and Reengineering. IEEE, 219-228.

[38] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K.Roy and Cristina

V Lopes. 2016. Sourcerercc: Scaling code clone detection to big-code. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE,1157-
1168.

[39] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant Anna and Lorraine

Bier. 1998. Clone detection using abstract syntax trees. In Proceedings of the
International Conference on Software Maintenance. IEEE, 368–377.

[40] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su and Stephane Glondu. 2007.

Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering. IEEE Computer

Society, 96–105.

[41] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In

Proceedings of Eighth Working Conference on Reverse Engineering. IEEE, 301–309.
[42] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify du-

plication in source code. In International Static Analysis Symposium. Springer,
40–56.

[43] Sargsyan, Sevak, Kurmangaleev S, Belevantsev A and Avetisyan A. 2016. Scalable

and accurate detection of code clones. Programming and Computer Software 42.1
(2016), 27-33.

[44] J-F Patenaude, Ettore Merlo, Michel Dagenais, and Bruno Laguë. 1999. Extending

software quality assessment techniques to java systems. In Proceedings of the 7th
International Workshop on Program Comprehension. IEEE, 49–56.

[45] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas

Kontogiannis. 1999. Measuring clone based reengineering opportunities. In Pro-
ceedings of the 6th International Software Metrics Symposium. IEEE, 292–303.

[46] Manishankar Mondal, Chanchal K Roy, and Kevin A Schneider. 2015. A compara-

tive study on the bug-proneness of different types of code clones. In Proceedings of
the IEEE International Conference on Software Maintenance and Evolution (ICSME
15). IEEE, 91–100.

[47] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional

Clone Detection by Exploiting Lexical and Syntactical Information in Source Code.

In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI 17). 3034–3040.

[48] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.

2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[49] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011.

MeCC:memory comparison-based clone detector. In Proceedings of the 33rd Inter-
national on Software Engineering. ACM, 301–310.

[50] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie and QianxiangWang. 2019. Neural

detection of semantic code clones via tree-based convolution. In IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 2019: 70-80.

	Abstract
	1 Introduction
	2 preliminaries and definitions
	2.1 Program Dependency Graph
	2.2 Subgraph Isomorphism
	2.3 Weisfeiler-Lehman Graph Kernel
	2.4 Similarity of Graphs Based on WL Graph Kernel

	3 proposed method
	3.1 Overview
	3.2 Simplification of PDG Structures
	3.3 Filtering of PDG Pairs
	3.4 Approximate Graph Matching Based on WL Graph Kernel
	3.5 Verifying

	4 evaluation
	4.1 Experimental Configuration
	4.2 Experimental Datasets
	4.3 Experimental Results

	5 related work
	6 limitations
	7 conclusion and future work
	Acknowledgments
	
	Untitled

